23,035 research outputs found

    Evidence of spin liquid with hard-core bosons in a square lattice

    Full text link
    We show that laser assisted hopping of hard core bosons in a square optical lattice can be described by an antiferromagnetic J1J_{1}-J2J_{2} XY model with tunable ratio of J2/J1J_{2}/J_{1}. We numerically investigate the phase diagram of the J1J_{1}-J2J_{2} XY model using both the tensor network algorithm for infinite systems and the exact diagonalization for small clusters and find strong evidence that in the intermediate region around % J_{2}/J_{1}\sim 0.5, there is a spin liquid phase with vanishing magnetization and valence bond orders, which interconnects the Neel state on the J2J1J_{2}\ll J_{1} side and the stripe antiferromagnetic phase on the % J_{2}\gg J_{1} side. This finding opens up the possibility of studying the exotic spin liquid phase in a realistic experimental system using ultracold atoms in an optical lattice.Comment: 5 pages, 5 figure

    Efficient Quantum Computation with Probabilistic Quantum Gates

    Get PDF
    With a combination of the quantum repeater and the cluster state approaches, we show that efficient quantum computation can be constructed even if all the entangling quantum gates only succeed with an arbitrarily small probability p. The required computational overhead scales efficiently both with 1/p and n, where n is the number of qubits in the computation. This approach provides an efficient way to combat noise in a class of quantum computation implementation schemes, where the dominant noise leads to probabilistic signaled errors with an error probability 1-p far beyond any threshold requirement

    Nonlocal Dynamics of Passive Tracer Dispersion with Random Stopping

    Full text link
    We investigate the nonlocal behavior of passive tracer dispersion with random stopping at various sites in fluids. This kind of dispersion processes is modeled by an integral partial differential equation, i.e., an advection-diffusion equation with a memory term. We have shown the exponential decay of the passive tracer concentration, under suitable conditions for the velocity field and the probability distribution of random stopping time.Comment: 7 page

    Topology of Knotted Optical Vortices

    Full text link
    Optical vortices as topological objects exist ubiquitously in nature. In this paper, by making use of the ϕ\phi-mapping topological current theory, we investigate the topology in the closed and knotted optical vortices. The topological inner structure of the optical vortices are obtained, and the linking of the knotted optical vortices is also given.Comment: 11 pages, no figures, accepted by Commun. Theor. Phys. (Beijing, P. R. China

    Entanglement-assisted transformation is asymptotically equivalent to multiple-copy transformation

    Full text link
    We show that two ways of manipulation of quantum entanglement, namely, entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. {\bf 83}, 3566 (1999)] and multiple-copy transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A {\bf 65}, 052315 (2002)], are equivalent in the sense that they can asymptotically simulate each other's ability to implement a desired transformation from a given source state to another given target state with the same optimal success probability. As a consequence, this yields a feasible method to evaluate the optimal conversion probability of an entanglement-assisted transformation.Comment: 5 pages, revtex4, references updated, no figures. A slightly shorter version appears in PR

    Supersolid and charge density-wave states from anisotropic interaction in an optical lattice

    Full text link
    We show anisotropy of the dipole interaction between magnetic atoms or polar molecules can stabilize new quantum phases in an optical lattice. Using a well controlled numerical method based on the tensor network algorithm, we calculate phase diagram of the resultant effective Hamiltonian in a two-dimensional square lattice - an anisotropic Hubbard model of hard-core bosons with attractive interaction in one direction and repulsive interaction in the other direction. Besides the conventional superfluid and the Mott insulator states, we find the striped and the checkerboard charge density wave states and the supersolid phase that interconnect the superfluid and the striped solid states. The transition to the supersolid phase has a mechanism different from the case of the soft-core Bose Hubbard model.Comment: 5 pages, 5 figures

    Evolution of the Chern-Simons Vortices

    Full text link
    Based on the gauge potential decomposition theory and the ϕ\phi -mapping theory, the topological inner structure of the Chern-Simons-Higgs vortex has been showed in detail. The evolution of CSH vortices is studied from the topological properties of the Higgs scalar field. The vortices are found generating or annihilating at the limit points and encountering, splitting or merging at the bifurcation points of the scalar field ϕ.\phi .Comment: 10 pages, 10 figure

    Disclination in Lorentz Space-Time

    Get PDF
    The disclination in Lorentz space-time is studied in detail by means of topological properties of ϕ\phi -mapping. It is found the space-time disclination can be described in term of a Dirac spinor. The size of the disclination, which is proved to be the difference of two sets of su(2)% -like monopoles expressed by two mixed spinors, is quantized topologically in terms of topological invariants-winding number. The projection of space-time disclination density along an antisymmetric tensor field is characterized by Brouwer degree and Hopf index.Comment: Revtex, 7 page

    Neutrinos, Weak Interactions, and r-process Nucleosynthesis

    Get PDF
    Two of the key issues in understanding the neutron-to-proton ratio in a core-collapse supernova are discussed. One of these is the behavior of the neutrino-nucleon cross sections as supernova energies. The other issue is the many-body properties of the neutrino gas near the core when both one- and two-body interaction terms are included.Comment: To be published in the Proceedings of "International Symposium on Structure of Exotic Nuclei and Nuclear Forces (SENUF 06)", March 2006, Tokyo, Japa

    Effect of Transition Magnetic Moments on Collective Supernova Neutrino Oscillations

    Full text link
    We study the effect of Majorana transition magnetic moments on the flavor evolution of neutrinos and antineutrinos inside the core of Type-II supernova explosions. We find non-trivial collective oscillation effects relating neutrinos and antineutrinos of different flavors, even if one restricts the discussion to Majorana transition electromagnetic moment values that are not much larger than those expected from standard model interactions and nonzero neutrino Majorana masses. This appears to be, to the best of our knowledge, the only potentially observable phenomenon sensitive to such small values of Majorana transition magnetic moments. We briefly comment on the effect of Dirac transition magnetic moments and on the consequences of our results for future observations of the flux of neutrinos of different flavors from a nearby supernova explosion.Comment: 11 pages,appendix added, version accepted in JCA
    corecore